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Abstract

Non-commutative geometry of quantised contact spheres introduced by Omori et al. in [J. Math.
Soc. Jpn. 50 (1998) 915; Noncommutative 3-sphere as an Example of Noncommutative Contact
Algebras, Banach Center Publications, vol. 40, 1997, pp. 329–334] is studied. In particular it is
proven that these spheres form a non-commutative Hopf fibration in the sense of Hopf–Galois
extensions. The monopole (strong) connection is constructed, and projectors describing projective
modules of all monopole charges are computed.
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1. Introduction

The aim of non-commutative geometry is to develop geometric constructions within
a realm of non-commutative algebras as if they were algebras of coordinate functions
on non-commutative spaces. The last 20 years have witnessed both enormous theoretical
development of the subject as well as the construction of numerous examples coming from
the theories of quantum groups and operator algebras. More recently, it has become clear that
the ideas of non-commutative geometry form an indispensable part of modern theoretical
high energy physics, as it turns out that the space–time of M-theory in the presence of the
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B-field displays typical non-commutative features. As a result of this development, gauge
theoretic constructions of objects such as monopoles and instantons, have been performed
also for non-commutative spaces. The spaces that appear in superstring and M-theories are
rather simple from the non-commutative geometry point of view, however, and thus it has
been possible to modify classical physical constructions in quite a straightforward way in
this case. To address gauge theory on geometrically less trivial spaces one needs to adapt
more advanced objects of classical geometry such as principal bundles and connections on
them.

The geometric approach to quantum group gauge theories based on quantum principal
bundles or Hopf–Galois extensions was proposed in[4]. Since its inception, it attracted a
considerable interest. The general structure of quantum principal bundles and their gen-
eralisations known as coalgebra principal bundles or coalgebra–Galois extensions[5,7] is
well known by now. In particular those Hopf- and coalgebra–Galois extensions that admit
a special kind of connection, known as strong connections introduced in[18] seem to be of
special interest for non-commutative geometry a la Connes (cf.[10]). As recently revealed in
[3,15,19]the modules of sections of quantum vector bundles associated to such extensions
are projective modules, i.e., vector bundles of non-commutative geometry. Thus quantum
and coalgebra principal bundles provide an important approach to non-commutative geom-
etry which on one hand is well adapted to quantum deformations, while on the other ties up
nicely with Alain Connes’ approach to non-commutative geometry based onC∗-algebras
and projective modules. This makes Galois-type extensions with strong connections perfect
candidates for (algebraic) non-commutative principal bundles. For an extensive review of
algebraic background and recent progress in this field we refer to[17].

Despite the fact that the structure of Galois-type extensions is very well known, it is
quite difficult to construct concrete examples of such extensions that in addition admit
strong connections. These are technical rather than structural difficulties, hence they do
not undermine usefulness of the general theory. On the other hand interest in any abstract
theory is fuelled by non-trivial examples. For many years essentially one non-trivial example
of a quantum principal bundle with a strong connection was known. This was the original
example of a quantum Hopf fibration in[4]. Recently, however, a number of new non-trivial
examples have been constructed. These include examples obtained by patching of trivial
quantum principal bundles[9,20] as well as examples motivated by recent interest in and
several constructions of quantum and non-commutative spheres initiated in[12,16] (see
[14] for a concise review of low-dimensional cases). An earlier deformation of the 3-sphere
introduced by Matsumoto[22] has been shown to give rise to a Hopf–Galois extension of
the (commutative) algebra of functions on the 2-sphere[8]. Most recently theq-instanton
bundle of[1] has been shown to be a coalgebra–Galois extension[2]. Other examples, in
particular[11] seem also to fit perfectly into the scheme of Galois-type extensions.

The aim of the present article is to reveal that quantum spheres constructed in[23,24]as
quantisations of contact structures on spherical manifolds, and thus termedcontact quan-
tum spheresgive rise to quantum principal bundles with strong connections. These are
all non-standard deformations of the Hopf fibration. The resulting connections appear
to be deformations of the Dirac magnetic monopole field. The general theory guides us
then to projectors for the associated quantum line bundles with an arbitrary monopole
charge.
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The paper is organised as follows. InSection 2we describe the non-standard defor-
mation of the 3-sphere, obtained in[23] by the quantisation of a contact structure on the
3-sphere. We show that this sphere admits an action of the groupU(1). In algebraic terms
it means that there is a coaction of the algebra of Laurent polynomials in one variable.
Next we show that the fixed points of these action (coaction) describe the deformed algebra
of the non-commutative 2-sphere, introduced in[23]. Finally we show that this structure
defines a quantum Hopf fibration (cf.[24, Section 4]), namely that the deformed algebra
of the non-commutative 3-sphere is a Hopf–Galois extension of the deformed algebra of
the non-commutative 2-sphere. InSection 3we construct explicitly a strong connection on
this Hopf–Galois extension. This immediately gives rise to projectors for quantum associ-
ated line bundles, which we explicitly compute. InSection 4we address some questions
about the problem of specifying the formal parameterµ to a numerical value and about the
possibility of aC∗-algebraic version.

We work over a field of complex numbersC and unadorned tensor product is overC.

2. The quantum Hopf fibration

The algebraic structure underlying quantum group principal bundles is provided by
Hopf–Galois extensions. To construct such an extension one needs the following data.
First, letH be a Hopf algebra with coproduct∆ : H → H ⊗ H , counitε : H → C and
antipodeS : H → H . Second, letP be a rightH-comodule algebra, i.e., an algebra and
a rightH-comodule such that the coaction∆R : P → P ⊗ H is an algebra map. For the
coaction we use the Sweedler notation∆R(p) = p(0)⊗p(1) (summation understood). With
these data one defines thecoinvariantsubalgebra ofP by

B = {x ∈ P |∆R(x) = x⊗ 1}.
SinceB is a subalgebra ofP there is an obvious inclusion map, hence an extension,B → P .
Furthermore,P is a(B, B)-bimodule, hence one can consider the tensor productP⊗BP . The
extensionB → P is called aHopf–Galois extension, provided the canonical leftP-module,
rightH-comodule map:

can := (mP ⊗ id) ◦ (id ⊗B ∆R) : P ⊗B P → P ⊗H, (1)

wheremP denotes the product inP , is bijective. Explicitly, the mapcanreads

can(x⊗B y) = xy(0) ⊗ y(1).

This algebraic definition has a strong geometric motivation and meaning, which can be
explained as follows. First, one should think of all the algebras as deformed ‘algebras of
(polynomial) functions’ on spaces. With this interpretationH is to be understood as an
‘algebra of functions’ on a group, whileP plays the role of an algebra of functions on a
space on which this group acts. Indeed, the action of a group gives rise to a coaction of
the corresponding Hopf algebra of functions. ThenB is to be interpreted as functions on a
quotient space (with respect to the action). Second, differential one-forms on any algebraP

are defined as aP-bimoduleΩ1(P) together with a linear map d :P → Ω1(P) that satisfies
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the Leibniz rule d(pp′) = d(p)p′ + pd(p′). In what follows we restrict ourselves to a
particular example of differential forms, known as universal differential forms and denoted
by Ω1P . The bimoduleΩ1P is defined as the kernel of the multiplication map, and the
differential in this case is given by the map

d : P → Ω1P = kermP, p �→ 1 ⊗ p− p⊗ 1.

This is an universal example which can be defined for any algebra, and which is also
closely related to the definition of a tensor product. Indeed, directly from the definition of
the tensor product ofP over its subalgebraB it follows that there is an obvious projection
P ⊗ P → P ⊗B P , x⊗ y �→ x⊗B y. The kernel of this projection equalsP(Ω1B)P , i.e.,
all the finite sums of the form

∑
i xiβiyi with xi, yi ∈ P andβi ∈ Ω1B. In other words,

P ⊗B P is defined by an exact sequence:

0 → P(Ω1B)P → P ⊗ P → P ⊗B P → 0. (2)

P(Ω1B)P is obviously a sub-bimodule ofΩ1P , and in the context of a Hopf algebra
H coacting on an algebraP with coinvariantsB, the elements ofP(Ω1B)P are termed
horizontal forms. In view of sequence(2) the bijectivity of the canonical map in(1) is
equivalentto the exactness of the following sequence:

0 → P(Ω1B)P → P ⊗ P
χ−→P ⊗H → 0, (3)

whereχ(x ⊗ y) = xy(0) ⊗ y(1). Sequence(3) has a truly geometric flavour. First, the
surjectivity of χ means the freeness of the coaction, for, by definition, a (Lie) groupG

acts freely on a (topological) spaceX if and only if the mapX ×G → X × X, (x, g) �→
(x, x · g) is injective. By writing down the corresponding map for algebras of functions
we arrive at the mapχ (which, for a free action, must be surjective by duality). Second,
sinceP(Ω1B)P ⊆ Ω1P ⊆ P ⊗ P , we can restrictχ to the mapχ : Ω1P → P ⊗ H+,
whereH+ = kerε. Thus the exactness of sequence(3) is equivalent to the exactness of the
following sequence:

0 → P(Ω1B)P → Ω1P
χ−→P ⊗H+ → 0. (4)

The requirement that the kernel ofχ equals horizontal forms, comes from the fact that,
classically, horizontal forms are defined as those forms that are annihilated by vector fields
tangent to the fibre of aG-bundleX. Any such vertical vector at any given point ofX can
be obtained by vertical lifting of an element of the Lie algebra ofG. In the Hopf algebra
case, one defines a ‘quantum Lie algebra’ ofH relative to the universal differential calculus
as linear mapsH+ → C. Then the mapχ plays the role of corresponding vertical lift.

Thus the algebraic notion of a Hopf–Galois extension and the geometric notion of a
quantum principal bundle with the universal differential calculus are equivalent to each
other. The geometric description of quantum principal bundles can be extended to other
differential calculi as well, and we refer to[4] for further details.

The aim of this section is to show that the quantum contact 3-sphere defined in[23] is a
Hopf–Galois extension of its algebra of coinvariants. The latter is the algebra of functions
of the quantum 2-sphere also defined in[23].
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The polynomial∗-algebraA(S3
µ) that underlies the Omori–Maeda–Miyazaki–Yoshioka

quantum contact 3-sphere is generated by a self-adjointµ and bya, b, a∗, b∗ with relations:

ba = ab, ab∗ = (1 − µ)b∗a, (5a)

µa− aµ = µaµ, µb− bµ = µbµ, (5b)

aa∗ − (1 − µ)a∗a = µ, bb∗ − (1 − µ)b∗b = µ, (5c)

a∗a+ b∗b = 1. (5d)

From the above relations it follows that

aa∗ + bb∗ = 1 + µ. (6)

Note also that(5b) is equivalent to

µa(1 + kµ) = (1 + (k + 1)µ)aµ, µb(1 + kµ) = (1 + (k + 1)µ)bµ

for all k ∈ Z. We denote byA′(S3
µ) the polynomial∗-algebraA(S3

µ) with the generatorµ
required to be invertible (i.e., with adjoinedµ−1).

It turns out convenient for our purposes to employ a certainµ-regulated smooth algebra
A∞(S3

µ), which is defined and studied in[23]. The algebraA∞(S3
µ), callednon-commutative

contact algebraonS3, contains densely the polynomial∗-algebraA′(S3
µ). Also, it contains

f(µ) for any formal power seriesf , and the following relations are fulfilled:

af(µ) = f

(
µ

1 + µ

)
a, f(µ)a = af

(
µ

1 − µ

)
, (7a)

bf(µ) = f

(
µ

1 + µ

)
b, f(µ)b = bf

(
µ

1 − µ

)
. (7b)

In particular, for allk ∈ Z the elements 1+ kµ are invertible and have square root in
A∞(S3

µ). In the sequel we shall need their inverses as well as the square roots that satisfy
the following relations∀k ∈ Z:

aµ(1 + kµ)−1 = µ(1 + (k + 1)µ)−1a, bµ(1 + kµ)−1 = µ(1 + (k + 1)µ)−1b

(8)

and

a
√

1 + kµ =
√

1 + (k + 1)µ√
1 + µ

a, b
√

1 + kµ =
√

1 + (k + 1)µ√
1 + µ

b. (9)

Althoughµ is a generator it can be regarded as a noncentral formal parameter, cf.[23] for
a precise meaning of this statement. Also, from the defining relations of(5) it is apparent
thatA∞(S3

µ) is aZ-graded algebra with the grading defined by setting

deg(a) = deg(b) = 1, deg(a∗) = deg(b∗) = −1, deg(µ) = 0.

This in turn allows us to viewA∞(S3
µ) as a comodule algebra of the Hopf algebraH of

functions onU(1). Explicitly, H = C[u, u−1] is an algebra of Laurent polynomials in one
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variableu (i.e.,u−1 is the multiplicative inverse ofu), and it is a∗-algebra withu∗ = u−1.
A Hopf algebra structure ofH is determined by∆(u) = u⊗ u, ε(u) = 1 andS(u) = u−1.
The grading ofA∞(S3

µ) makes it a right comodule algebra with the coaction given on
homogeneous elements by

∆R(x) = x⊗ udeg(x).

Thus explicitly on generators the coaction comes out as

∆R(a) = a⊗ u, ∆R(b) = b⊗ u, ∆R(a
∗) = a∗ ⊗ u−1,

∆R(b
∗) = b∗ ⊗ u−1, ∆R(µ) = µ⊗ 1.

Note that the coaction∆R is compatible with the∗-structure (it is a∗-algebra homomor-
phism).

The definition of the coaction in terms of the grading immediately implies that the coin-
variant subalgebra coincides with the zero-degree subalgebra, i.e.:

A∞(S2
µ) := {x ∈ A∞(S3

µ)|∆R(x) = x⊗ 1} = {x ∈ A∞(S3
µ)|deg(x) = 0}.

UsingEq. (8)it is immediate to verify thatµ is a central element inA∞(S2
µ). It can be also

seen thatA∞(S2
µ) is the commutant ofµ in A∞(S3

µ).
The relations(5) and (8)provide us with a deeper insight into the structure ofA∞(S2

µ).
With their help we can establish thatA∞(S2

µ) contains a (dense) polynomial∗-algebra
A′(S2

µ) generated by

X = X∗ = aa∗ − 1
2(µ+ 1), Z = ab∗, Z∗ = ba∗

and self-adjoint (invertible) elementµ. Notice thatA′(S2
µ) is contained strictly in the com-

mutant ofµ in A′(S3
µ), which coincides with the grade-zero subalgebra ofA′(S3

µ) and also
with theH-coinvariant subalgebra ofA′(S3

µ). Similar observations hold forA(S2
µ), defined

as the∗-algebra obtained fromA′(S2
µ) by omitting the invertibility ofµ.

The relations inA∞(S2
µ) are derived from the relations inA∞(S3

µ) and come out as

µX−Xµ = 0, µZ − Zµ = 0, (10a)

XZ− ZX = −µZ, (10b)

ZZ∗ − Z∗Z = −2µX, (10c)(
X+ 1

2µ
)2 + ZZ∗ = 1

4. (10d)

Note that from the relations above it follows that there is also a second radial relation:

(X− 1
2µ)

2 + Z∗Z = 1
4.

Sinceµ is central, it could be possible to considerµ as a formal parameter and specify it
to a numerical value, we shall comment on this issue in the final section.
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We claim that in a ‘dual’ sense the quantum contact 3-sphereS3
µ is a total space of a quan-

tumU(1)-principal bundle over the quantum 2-sphereS2
µ, i.e.,A∞(S3

µ) is a Hopf–Galois
extension ofA∞(S2

µ) with the structure Hopf algebraH . This claim is proven by explicit
construction of the inverse to the canonical map.

To relieve the notation we writeP for A∞(S3
µ) andB for A∞(S2

µ). Consider the map
can−1 : P ⊗H → P ⊗B P defined for allx ∈ P andn ∈ N by

can−1(x⊗ un) =
n∑
k=0

(
n

k

)
x(a∗)n−k(b∗)k ⊗B b

kan−k, (11a)

can−1(x⊗ u−n) = x(1 + nµ)−1
n∑
k=0

(
n

k

)
an−kbk ⊗B (b

∗)k(a∗)n−k, (11b)

where(
n

k

)

are the usual binomial coefficients. Directly from the definition it follows that can−1 is a left
P-module map. Furthermore, the degree counting on the right hand side and the comparison
of the powers ofu immediately confirm that can−1 is a rightH-comodule map. Before we
prove that can−1 is the inverse map to can we note that for alln ∈ N:

n∑
k=0

(
n

k

)
(a∗)n−k(b∗)kbkan−k = 1, (12a)

n∑
k=0

(
n

k

)
an−kbk(b∗)k(a∗)n−k = 1 + nµ. (12b)

The formulae(12)are most easily proven by induction. They are clearly satisfied forn = 1.
Next, assume that they hold forn−1 withn ≥ 2. UsingEqs. (5d) and (6)and the well-known
formula:

k∑
l=0

(−1)l
(

n

k − l

)
=
(
n− 1
k

)
,

observe that
n∑
k=0

(
n

k

)
(a∗)n−k(b∗)kbkan−k =

n−1∑
k=0

(
n− 1
k

)
(a∗)n−1−k(b∗)kbkan−1−k, (13a)

n∑
k=0

(
n

k

)
an−kbk(b∗)k(a∗)n−k

=
n−1∑
k=0

(
n− 1
k

)
an−1−kbk(1 + µ)(b∗)k(a∗)n−1−k. (13b)
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Then using(8) we conclude thatEqs. (12a) and (12b)hold for alln. Now we are in position
to prove that can−1 is the inverse of can. Takex ∈ P andn ∈ N. Then

can(can−1(x⊗ un)) = can

(
n∑
k=0

(
n

k

)
x(a∗)n−k(b∗)k ⊗B b

kan−k
)

=
n∑
k=0

(
n

k

)
x(a∗)n−k(b∗)kbkan−k ⊗ un = x⊗ un,

where the last equality follows from(12a). Similarly, the use of(12b)confirms that

can(can−1(x⊗ u−n)) = x⊗ u−n.

Conversely, we need to check the equality can−1(can(x⊗B y)) = x⊗B y, for all x, y ∈ P .
SinceP is aZ-graded algebra suffices it to take homogeneousy of degreen. Supposen ≥ 0.
Then

can−1((can(x⊗B y)) = can−1(xy⊗ un) =
n∑
k=0

(
n

k

)
xy(a∗)n−k(b∗)k ⊗B b

kan−k.

Since deg(y) = n, each of they(a∗)n−k(b∗)k has degree 0, hence it is inB and we can write

can−1((can(x⊗B y)) =
n∑
k=0

(
n

k

)
x⊗B y(a

∗)n−k(b∗)kbkan−k = x⊗B y

by (12a). In the case of homogeneousy of negative degree, we useEq. (12b)to obtain the
assertion. Thus we have proven that can is a bijective map, i.e.,A∞(S3

µ) is a Hopf–Galois
extension ofA∞(S2

µ) as claimed.

3. Monopole connection and projectors of charge n

3.1. Strong connection

Connections in quantum principal bundles are defined as colinear splittings of one forms
into horizontal and vertical parts (cf.[4]). From the non-commutative geometry point of
view a special class of connections, introduced in[18] and known as strong connections,
is of particular interest. In the universal differential calculus case, strong connections on a
Hopf–Galois extensionB → P are in one-to-one correspondence withstrong connection
one forms. These are defined as homomorphismsω : H → Ω1P vanishing on 1 and
satisfying the following three conditions (see[15, Theorem 2.3]for various equivalent
descriptions of strong connections):

∆Ω1P ◦ ω = (ω ⊗ id) ◦ Ad, (14a)

(mP ⊗ id) ◦ (id ⊗∆R) ◦ ω = 1 ⊗ (id − ε), (14b)
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dp− p(0)ω(p(1)) ∈ (Ω1B)P ∀p ∈ P. (14c)

A few of the symbols above require explanation. The map∆Ω1P on the left hand side of
Eq. (14a)is the right coaction ofH onΩ1P obtained be restricting the right coaction ofH
on the tensor productP ⊗ P (right diagonal coaction). Explicitly:

∆Ω1P : Ω1P → Ω1P ⊗H,
∑
i

pi ⊗ p̃i �→
∑
i

pi(0) ⊗ p̃i(0) ⊗ pi(1)p̃
i
(1).

The map Ad on the right hand side ofEq. (14a)is the right adjoint coaction ofH on itself,
i.e., Ad :H → H⊗H , h �→ h(2)⊗S(h(1))h(3). ThusEq. (14a)corresponds to the classical
ad-covariance property of a connection one-form. As recalled inSection 2, the map

χ = (mP ⊗ id) ◦ (id ⊗∆R)

on the left hand side ofEq. (14b)has a geometric meaning of avertical lift, i.e., an operation
which lifts an element of the Lie algebra of a structure group of a principal bundle to a vector
tangent to a fibre. ThusEq. (14b)has the classical geometric meaning of the property that
a connection form evaluated at a vertical lift of an element of a Lie algebra, returns back
this element. Finally,Eq. (14c)is the strongness condition, which distinguishes strong
connections within a class of all connections on a Hopf–Galois extension.

Suppose that the antipodeS ∈ H is invertible. In this caseP is a leftH-comodule with
the coaction:

∆L : P → H ⊗ P, p �→ S−1p(1) ⊗ p(0).

One then proves that if there is a map% : H → P⊗P that satisfies the following conditions:

%(1) = 1 ⊗ 1, (15a)

χ(%(h)) = 1 ⊗ h, (15b)

%(h(1))⊗ h(2) = (id ⊗∆R) ◦ %(h), (15c)

h(1) ⊗ %(h(2)) = (∆L ⊗ id) ◦ %(h) (15d)

for all h ∈ H , then the map

ω : H → Ω1P, h �→ %(h)− ε(h)1 ⊗ 1 (16)

is a strong connection form. This is, in fact, an equivalent description of strong connection
one forms, which is a consequence of[21, Proposition 3.4]and the observation that if
% satisfies(15c) and the correspondingω satisfies(14a) then% satisfies(15d). Note that
Eqs. (15c) and (15d)simply state that% is anH-bicomodule map, whereH is a viewed as
a bicomodule via the coproduct, andP ⊗ P is anH-bicomodule with coactions∆L ⊗ id
and id⊗∆R.

The antipode of the Hopf algebraH of functions onU(1) is involutive, i.e.,S ◦ S = id,
hence, in particular, invertible. Thus we can define the left coaction∆L for P = A∞(S3

µ).
This again is defined in terms of theZ-grading and comes out as

∆L(x) = u−deg(x) ⊗ x



354 T. Brzeziński et al. / Journal of Geometry and Physics 50 (2004) 345–359

for any homogeneousx ∈ P . Thus we can follow the above procedure in the case of a
Hopf–Galois extensionP = A∞(S3

µ) of B = A∞(S2
µ), and define% : H → P ⊗ P by

%(un) =
n∑
k=0

(
n

k

)
(a∗)n−k(b∗)k ⊗ bkan−k, (17a)

%(u−n) = (1 + nµ)−1
n∑
k=0

(
n

k

)
an−kbk ⊗ (b∗)k(a∗)n−k, (17b)

%(1) = 1 ⊗ 1 (17c)

forn ∈ N. Note that this is simply the expression for can−1(1⊗h) lifted toP⊗P by omitting
the decorationB on⊗B (cf.Eq. (11)). By the definition of%,Eq. (15a)is satisfied. Next, since
χ is a lifting of the canonical map can toP ⊗ P , similar arguments to those used to prove
that can−1 is the right inverse of can ensure thatEq. (15b)is satisfied. Moreover, similarly
as in the discussion after the definition of can−1, by counting the degree it follows that%
is a rightH-colinear map, henceEq. (15c)holds. Finally, since deg((a∗)n−k(b∗)k) = −n
and deg(an−kbk) = n, one easily realises that the map% is also leftH-colinear, so that
Eq. (15d)is satisfied. Thus we have constructed a strong connection in the quantum contact
Hopf fibration with the strong connection formω(un) = %(un)− 1 ⊗ 1, for all n ∈ Z.

3.2. Projectors

To any Hopf–Galois extensionB → P with the structure Hopf algebraH and any
right H-comoduleV one can associate a leftB-moduleΓH(V, P) which plays the role
of the module of sections of the associated quantum vector bundle. Explicitly,ΓH(V, P)

is a vector space of rightH-comodule mapsφ : V → P with the B-action given by
(b · φ)(v) = bφ(v). If a Hopf–Galois extensionB → P admits a strong connection andH
has a bijective antipode then for any finite-dimensionalV , ΓH(V, P) is a finitely generated
projective leftB-module (cf.[15]). Furthermore, the covariant derivative corresponding to
a strong connection gives rise to a connection in moduleΓH(V, P).

For any map% : H → P ⊗ P satisfying conditions(15), write, for allh ∈ H :

%(h) =
∑
i

%
[1]
i (h)⊗ %

[2]
i (h). (18)

Although the numberr of terms in the sum on the right hand side may depend onh,
it is always finite. Chooser and the%[1]

i (h), %
[2]
i (h) in such a way that each of the sets

{%[1]
1 (h), %

[1]
2 (h), . . . , %

[1]
r (h)}, {%[2]

1 (h), %
[2]
2 (h), . . . , %

[2]
r (h)} is linearly independent. Ap-

plication of id⊗ ε to both sides ofEq. (15b)yields∑
i

%
[1]
i (h)%

[2]
i (h) = ε(h). (19)

Since the right hand side ofEq. (18)is finite, for anyh ∈ H one can define a square matrix
p(h) by

P � p(h)ij = %
[2]
i (h)%

[1]
j (h). (20)
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Eq. (19)immediately implies that
∑
k p(h)ikp(h)kj = ε(h)p(h)ij , hence the matrixp(h) is

an idempotent, providedε(h) = 1. Furthermore, ifh is a group-like element, i.e.,∆(h) =
h ⊗ h, thenEqs. (15c) and (15d)imply that∆R(p(h)ij ) = p(h)ij ⊗ 1, i.e.,p(h)ij ∈ B.
In other words, for any group-like elementh ∈ H , p(h) is anr × r matrix (r being the
number of terms in(18)), that is an idempotent in a matrix ring overB. Therefore it defines
a finitely generated projective module viaBrp(h). The connection corresponding to% is
simply the Grassmann or Levi–Civita connection inBrp(h), i.e., a connection determined
by the idempotent (cf.[13]).

In the case of the Hopf–Galois extensionA∞(S2
µ) → A∞(S3

µ) each of theun is a
group-like element. Therefore the map% defined by formulae(17) gives an infinite family
of idempotentsp(un), n ∈ Z. Each of thep(un) is an(n+ 1)× (n+ 1)-matrix with entries
fromA∞(S2

µ) (the latter claim can be easily confirmed by the degree counting). Obviously
there is an ambiguity in factorising% into %[1] ⊗ %[2] (scalar coefficients can be factorised
in infinitely many ways into legs of tensor product). However if one requiresp(un) to be
Hermitian (i.e., projectors inB) then the unique possibility turns out to be

%(1) = 1 ⊗ 1, %(un) =
n∑
k=0

[√(
n

k

)
(a∗)n−k(b∗)k

]
⊗
[√(

n

k

)
bkan−k

]
,

(21a)

%(u−n) =
n∑
k=0

[√(
n

k

)
(1 + nµ)−1an−kbk

]
⊗
[√(

n

k

)
(b∗)k(a∗)n−k

]
(21b)

for n ∈ N. This choice leads to an infinite family of Hermitian projectors with entries from
A∞(S2

µ). Explicitly, p(1) = 1, and

p(un)kl =
√(

n

k

)(
n

l

)
bkan−k(a∗)n−l(b∗)l, (22a)

p(u−n)kl =
√(

n

k

)(
n

l

)
(b∗)k(a∗)n−k(1 + nµ)−1an−lbl, (22b)

n ∈ N. At this point it is interesting to mention that apparently these formulae are polynomial
in a, b, a∗, b∗, and polynomial only in(1 + nµ)−1, with n ∈ N, but not inµ (e.g.,(22b)).
However, their entries have to be properly rearranged in order to express them in terms of
the generatorsX, Z, Z∗. In A∞(S3

µ) this can be always done with the help of relations(5)
and (8)at the cost of creating new expressions(1 + nµ)−1 in (22a)and(1 − nµ)−1 in
(22b), with n ∈ N. Altogether the whole set of projectors can be rewritten in terms ofX,
Z, Z∗ and all(1 + kµ)−1 with k ∈ Z. (The reason for this behaviour is that the elements
X, Z, Z∗ andµ do not generate the whole grade-zero polynomial subalgebra ofA(S3

µ).)
For instance, the first few projectorsp(u), p(u−1), p(u2), p(u−2) come out in a matrix
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form as

p(u) =

 1

2 (1 + µ)+X Z

Z∗ 1
2 (1 + µ)−X


 , p(u−1) =


 1

2 (1 − µ)+X Z∗
Z 1

2 (1 − µ)−X


 ,

p(u2) = 1

1 + µ



(X+ 1

2 (1 + µ))(X+ 1
2 (1 + 3µ))

√
2(X+ 1

2 (1 + 3µ))Z Z2
√

2Z∗(X+ 1
2 (1 + 3µ)) 2( 1

2 (1 + µ)+X)( 1
2 (1 + µ)−X)

√
2( 1

2 (1 + µ)−X)Z

(Z∗)2 √
2Z∗( 1

2 (1 + µ)−X) ( 1
2 (1 + µ)−X)( 1

2 (1 + 3µ)−X)


 ,

p(u−2) = 1

1 − µ



(X+ 1

2 (1 − µ))(X+ 1
2 (1 − 3µ))

√
2(X+ 1

2 (1 − 3µ)Z∗ (Z∗)2
√

2Z(X+ 1
2 (1 − 3µ)) 2( 1

2 (1 − µ)+X)( 1
2 (1 − µ)−X)

√
2( 1

2 (1 − µ)−X)Z∗
Z2 √

2Z( 1
2 (1 − µ)−X) ( 1

2 (1 − µ)−X)( 1
2 (1 − 3µ)−X)


 .

Note an interesting symmetry betweenp(un), andp(u−n) for low values ofn. The projector
p(u−n) is obtained from the projectorp(un) by replacingµ by −µ and interchanging ofZ
with Z∗. This is true for any value of chargen as can be verified directly from the explicit
expressions for greater chargesn, which can be presented. However, this follows also from
the following symmetry properties. First observe that the transformation

Z �→ Z∗, Z∗ �→ Z, X �→ X, µ �→ −µ (23)

does not affect the defining relations(10) and defines an automorphism of the algebra
A∞(S2

µ). This symmetry ofA∞(S2
µ) comes in fact from the following symmetry ofA∞(S3

µ).
Using the elements

√
1 + kµ ∈ A∞(S3

µ), their inverses 1/
√

1 + kµ for k ∈ Z and the
relations(9) we see that the map

ϑ : A∞(S3
µ) → A∞(S3

µ), µ �→ −µ, a �→ A =
√

1 − µa∗,

b �→ B =
√

1 − µb∗ (24)

extends to an algebra automorphism. Note thatϑ maps degreen elements to degree−n
elements, and on the level of degree 0 elements corresponds to the automorphism ofA∞(S2

µ)

given by (23). Now, using the relations

an(1 − µ) = 1 + (n− 1)µ

1 + nµ
an, bn(1 − µ) = 1 + (n− 1)µ

1 + nµ
bn, n > 0

and the fact thatµ is central inA∞(S2
µ) we find that

ϑ(p(un)kl) = p(u−n)kl.

Thus the automorphismϑ|A∞(S2
µ)

: A∞(S2
µ) → A∞(S2

µ) turns the degreen projectors into
degree−n projectors, and its existence proves the stated symmetry of monopole projectors.

4. Final remarks

If µ is not required to be invertible the underlying polynomial∗-algebraA(S3
µ) admits a

specification toµ = 0, after which it coincides with the usual∗-algebra of polynomials on
the ‘classical’S3. As far as the polynomial∗-algebraA′(S2

µ) is concerned, sinceµ is central
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it can be specified to any nonzero real value. This yields a family of quantum 2-spheres
isomorphic to the universal enveloping algebra of su(2) with a constrained value 1/µ2 of
the quadratic Casimir element (cf.[14]). The∗-algebraA(S2

µ) (i.e., when the invertibility
of µ is not assumed) admits in addition a specification toµ = 0, which clearly corresponds
to polynomials on the ‘classical’S2. Note that the Eq. (22) withµ considered as a real
deformation parameter rather than as a central generator define also a family of projectors
p(un) over such quantum 2-spheres. In particular, whenµ = 0, the projectorsp(un)
correspond to line bundle projectors of the monopole charge or Chern’s numbern overS2.
Note also that thenϑ defined by (24) is the orientation reversing automorphism ofS3.

It would be interesting to investigate further our bundles and the associated projective
modules, especially the pairing betweenK-theory andK-homology. For that aim it would
be convenient to have aC∗-algebraic version of the construction above as otherwise com-
putation of, e.g., theK-groups is a formidable task. It can be seen that the∗-algebras
A(S3

µ) andA(S2
µ) admit certainC∗-algebraic completions. Although intuitively resem-

bling some topological quantum four (resp. three)-dimensional spaces rather than 3-spheres
(resp. 2-spheres), they nevertheless would constitute interesting examples. Unfortunately,
there is one obstacle for this task. In order to write formulae(11) for the inverse of the
canonical map and then for the connection and the projectors we should adjoin toA(S3

µ)

and toA(S2
µ) an infinite number of elements(1 + kµ)−1, k ∈ Z. (To be able to implement

the symmetry discussed at the end ofSection 3.2we should adjoin additionally the elements√
1 + kµ and 1/

√
1 + kµ.) It can be seen that this spoils not only theC∗-algebraic comple-

tion but already leads to problems on the level of unitary representations of the∗-algebraic
version. This follows from the representation theory of, e.g.,A(S2

µ), which can be inferred
from that of su(2). In fact all bounded representations decompose into finite-dimensional
irreducible ones. These in turn are as follows. There is a family of one-dimensional rep-
resentations (characters) parameterised by the points ofS2 that representµ by 0 (they
obviously do not extend toA′(S2

µ)). In addition, in each dimensionN ∈ N there are two
∗-representations, labelled byσ = ±1 that representµ either by 1/N or by−1/N. Namely,
they are given by

µvm = σ

N
vm, Xvm = σm

N
vm, Zvm = σ

2N

√
(N + 1 − 2m)(N − 1 + 2m)vm−1,

Z∗vm = σ

2N

√
(N − 1 − 2m)(N + 1 + 2m)vm+1 (25)

with respect to an orthonormal basisvm, wherem ∈ {−(N−1)/2,−(N−3)/2, . . . , (N−
3)/2, (N − 1)/2}.

This excludes a possibility of adjoining the needed elements if we want ourC∗-algebra
to describe more than merely the commutativeS2. At this point it is interesting to make
the following observation. Had we constrained ourselves to construct just certain subclass
of projectors, say for a selected class of charges, we might have a chance to accomplish
a nondegenerate∗-algebra extended by some (but not all) elements(1 + kµ)−1 and then
also itsC∗-algebraic version. For instance, restricting only to the positive chargesn leaves
at our disposal the series of all representations that representµ by 1/N. It is not clear
however what could be a possible interpretation of such a breaking of the (magnetic) charge
conjugation by the contact structure quantisation with a noncentral parameter.
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Finally, as explained inSection 2, Hopf–Galois extensions are quantum group principal
bundles with the universal differential calculus. It is certainly interesting and indeed desired
to study differential structures on quantised contact spheres and then try to analyse for
which low-dimensional calculi the Dirac monopole construction can be performed. In this
context, one can follow the procedure in[6] to construct compatible differential calculi on
quantised contact spheres using the strong connection derived in the present work.
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Project INTAS 00-257, and B. Zieliński is supported by the EPSRC grant GR/S01078/01.

References

[1] F. Bonechi, N. Ciccoli, M. Tarlini, Noncommutative instantons and the 4-sphere from quantum groups,
Commun. Math. Phys. 226 (2002) 419–432.

[2] F. Bonechi, N. Ciccoli, L. D¸abrowski, M. Tarlini, Bijectivity of the canonical map for the noncommutative
instanton bundle. J. Geom. Phys. 49 (2004) in press, doi: 10.1016/S0393-0440(03)00151-7.
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