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Abstract

Non-commutative geometry of quantised contact spheres introduced by Omori et al. in [J. Math.
Soc. Jpn. 50 (1998) 915; Noncommutative 3-sphere as an Example of Noncommutative Contact
Algebras, Banach Center Publications, vol. 40, 1997, pp. 329-334] is studied. In particular it is
proven that these spheres form a non-commutative Hopf fibration in the sense of Hopf-Galois
extensions. The monopole (strong) connection is constructed, and projectors describing projective
modules of all monopole charges are computed.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The aim of non-commutative geometry is to develop geometric constructions within
a realm of non-commutative algebras as if they were algebras of coordinate functions
on non-commutative spaces. The last 20 years have witnessed both enormous theoretical
development of the subject as well as the construction of numerous examples coming from
the theories of quantum groups and operator algebras. More recently, it has become clear that
the ideas of non-commutative geometry form an indispensable part of modern theoretical
high energy physics, as it turns out that the space—time of M-theory in the presence of the
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B-field displays typical non-commutative features. As a result of this development, gauge
theoretic constructions of objects such as monopoles and instantons, have been performed
also for non-commutative spaces. The spaces that appear in superstring and M-theories are
rather simple from the non-commutative geometry point of view, however, and thus it has
been possible to modify classical physical constructions in quite a straightforward way in
this case. To address gauge theory on geometrically less trivial spaces one needs to adapt
more advanced objects of classical geometry such as principal bundles and connections on
them.

The geometric approach to quantum group gauge theories based on quantum principal
bundles or Hopf—Galois extensions was proposdd]inSince its inception, it attracted a
considerable interest. The general structure of quantum principal bundles and their gen-
eralisations known as coalgebra principal bundles or coalgebra—Galois extdbsiiis
well known by now. In particular those Hopf- and coalgebra—Galois extensions that admit
a special kind of connection, known as strong connections introdug&gliseem to be of
special interest for non-commutative geometry ala Conneld (). As recently revealedin
[3,15,19]the modules of sections of quantum vector bundles associated to such extensions
are projective modules, i.e., vector bundles of non-commutative geometry. Thus quantum
and coalgebra principal bundles provide an important approach to non-commutative geom-
etry which on one hand is well adapted to quantum deformations, while on the other ties up
nicely with Alain Connes’ approach to non-commutative geometry basett ealgebras
and projective modules. This makes Galois-type extensions with strong connections perfect
candidates for (algebraic) non-commutative principal bundles. For an extensive review of
algebraic background and recent progress in this field we reféio

Despite the fact that the structure of Galois-type extensions is very well known, it is
quite difficult to construct concrete examples of such extensions that in addition admit
strong connections. These are technical rather than structural difficulties, hence they do
not undermine usefulness of the general theory. On the other hand interest in any abstract
theory s fuelled by non-trivial examples. For many years essentially one non-trivial example
of a quantum principal bundle with a strong connection was known. This was the original
example of a quantum Hopf fibration[#]. Recently, however, a number of new non-trivial
examples have been constructed. These include examples obtained by patching of trivial
quantum principal bundld®,20] as well as examples motivated by recent interest in and
several constructions of quantum and non-commutative spheres initiafgd, 6] (see
[14] for a concise review of low-dimensional cases). An earlier deformation of the 3-sphere
introduced by Matsumotf22] has been shown to give rise to a Hopf-Galois extension of
the (commutative) algebra of functions on the 2-spligfeMost recently thes-instanton
bundle of[1] has been shown to be a coalgebra—Galois exterfi2jo®ther examples, in
particular[11] seem also to fit perfectly into the scheme of Galois-type extensions.

The aim of the present article is to reveal that quantum spheres construf28cPi as
quantisations of contact structures on spherical manifolds, and thus teon&tt quan-
tum spheregive rise to quantum principal bundles with strong connections. These are
all non-standard deformations of the Hopf fibration. The resulting connections appear
to be deformations of the Dirac magnetic monopole field. The general theory guides us
then to projectors for the associated quantum line bundles with an arbitrary monopole
charge.
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The paper is organised as follows. Section 2we describe the non-standard defor-
mation of the 3-sphere, obtained[23] by the quantisation of a contact structure on the
3-sphere. We show that this sphere admits an action of the gr@p In algebraic terms
it means that there is a coaction of the algebra of Laurent polynomials in one variable.
Next we show that the fixed points of these action (coaction) describe the deformed algebra
of the non-commutative 2-sphere, introduced28]. Finally we show that this structure
defines a quantum Hopf fibration (¢R4, Section 4), namely that the deformed algebra
of the non-commutative 3-sphere is a Hopf—Galois extension of the deformed algebra of
the non-commutative 2-sphere.$ection 3wve construct explicitly a strong connection on
this Hopf—Galois extension. This immediately gives rise to projectors for quantum associ-
ated line bundles, which we explicitly compute. $ection 4we address some questions
about the problem of specifying the formal parametéo a numerical value and about the
possibility of aCc*-algebraic version.

We work over a field of complex numbetsand unadorned tensor product is oGer

2. Thequantum Hopf fibration

The algebraic structure underlying quantum group principal bundles is provided by
Hopf-Galois extensions. To construct such an extension one needs the following data.
First, let H be a Hopf algebra with coprodugt : H — H ® H, counite : H — C and
antipodeS : H — H. Second, letP be a rightH-comodule algebra, i.e., an algebra and
a right H-comodule such that the coactiatr : P — P ® H is an algebra map. For the
coaction we use the Sweedler notatidg(p) = p() ® p1) (Summation understood). With
these data one defines tba@invariantsubalgebra of by

B={x € PlAr(x) = x® 1}.

SinceB is a subalgebra af there is an obvious inclusion map, hence an extengion, P.
Furthermorep is a(B, B)-bimodule, hence one can consider the tensor pradl@gt P. The
extensiomB — P is called aHopf-Galois extensiqiprovided the canonical leRR-module,
right H-comodule map:

can = (mp®Rid)o(d®p AR) : PR P — PQ® H, (1)
wherem p denotes the product iR, is bijective. Explicitly, the maganreads

canx ®p y) = Xy ® Y-

This algebraic definition has a strong geometric motivation and meaning, which can be
explained as follows. First, one should think of all the algebras as deformed ‘algebras of
(polynomial) functions’ on spaces. With this interpretatifinis to be understood as an
‘algebra of functions’ on a group, whil@ plays the role of an algebra of functions on a
space on which this group acts. Indeed, the action of a group gives rise to a coaction of
the corresponding Hopf algebra of functions. Thiis to be interpreted as functions on a
quotient space (with respect to the action). Second, differential one-forms on any atgebra
are defined as B-bimodule21( P) together with a linear map dP — £21(P) that satisfies
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the Leibniz rule dpp) = d(p)p’ + pd(p’). In what follows we restrict ourselves to a
particular example of differential forms, known as universal differential forms and denoted
by £21P. The bimodule2! P is defined as the kernel of the multiplication map, and the
differential in this case is given by the map

d:P— 2P =kermp, p—1lp—pL

This is an universal example which can be defined for any algebra, and which is also
closely related to the definition of a tensor product. Indeed, directly from the definition of
the tensor product of over its subalgebr® it follows that there is an obvious projection
P® P — PQp P, x®y+— x®py. The kernel of this projection equalg21B) P, i.e.,

all the finite sums of the form} ; x;B;iy; with x;, y; € P andg; € 21B. In other words,

P ®p P is defined by an exact sequence:

0— P2'B)P > PR P— PRy P — 0. 2)

P(2'B) P is obviously a sub-bimodule of21P, and in the context of a Hopf algebra
H coacting on an algebr& with coinvariantsB, the elements of(£21B) P are termed
horizontal forms In view of sequencé2) the bijectivity of the canonical map il) is
equivalentto the exactness of the following sequence:

0— P2'B)P > PR PSP H — 0, (3)

where x(x ® ¥) = XYy ® y1). Sequencg3) has a truly geometric flavour. First, the
surjectivity of x means the freeness of the coaction, for, by definition, a (Lie) g@up
acts freely on a (topological) spageif and only if the mapX x G — X x X, (x, g) —

(x, x - g) is injective. By writing down the corresponding map for algebras of functions
we arrive at the mapy (which, for a free action, must be surjective by duality). Second,
since P(21B)P € 1P C P ® P, we can restricl to the mapy : 2P - P® HT,
whereH+ = kere. Thus the exactness of sequef@gs equivalent to the exactness of the
following sequence:

0— P2'B)P > 2'PAPe HT — 0. (4)

The requirement that the kernel gfequals horizontal forms, comes from the fact that,
classically, horizontal forms are defined as those forms that are annihilated by vector fields
tangent to the fibre of &-bundleX. Any such vertical vector at any given point &fcan

be obtained by vertical lifting of an element of the Lie algebraofin the Hopf algebra
case, one defines a ‘quantum Lie algebratofelative to the universal differential calculus

as linear mapg/™ — C. Then the mayy plays the role of corresponding vertical lift.

Thus the algebraic notion of a Hopf—Galois extension and the geometric notion of a
quantum principal bundle with the universal differential calculus are equivalent to each
other. The geometric description of quantum principal bundles can be extended to other
differential calculi as well, and we refer {d] for further details.

The aim of this section is to show that the quantum contact 3-sphere defif28] ia a
Hopf—Galois extension of its algebra of coinvariants. The latter is the algebra of functions
of the quantum 2-sphere also defined4a].
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The polynomiaLk-aIgebraA(Sﬁ) that underlies the Omori—-Maeda—Miyazaki—Yoshioka
quantum contact 3-sphere is generated by a self-adjcamid bya, b, a*, b* with relations:

ba= ab, ab* = (1 - w)b*a, (5a)
pna — ap = paj, ub —bu = ubu, (5b)
aa* — (1— wa*a=p, bb* — (1 — w)b*b = p, (5¢)
a*a+ b = 1. (5d)

From the above relations it follows that

aa” + bb* =1+ . (6)
Note also tha{5b)is equivalent to

na(l+kp) = 1+ (k + Dwap, ub(1+kp) = (1+ (k+ Dp)bu

for all k € Z. We denote by4’(Si’) the ponnomiaLk-aIgebraA(Sﬁ) with the generaton
required to be invertible (i.e., with adjoined 1).

It turns out convenient for our purposes to employ a cemtaregulated smooth algebra
A (Sﬁ), whichis defined and studied|i23]. The algebrai > (Sﬁ), callednon-commutative
contact algebraon $2, contains densely the polynom'balalgebraA/(Sﬁ). Also, it contains
f(w) for any formal power serieg, and the following relations are fulfilled:

af(w) = f (1 - M) a,  fwa= af(ﬁ) , (7a)
bf(u) = f (ﬁ) b, f(wb= bf(ﬁ) . (7b)

In particular, for allk € Z the elements & ku are invertible and have square root in
AOO(SIE). In the sequel we shall need their inverses as well as the square roots that satisfy
the following relations/k € Z:

apQ+ k)t =p@+ k+Dw e, bp@ k)t = p@4 Kk + D)
(8)
and

JIFEFDi JITEFDi
1+iky = ———ma, b1+ kypy = ——b.
Y e T Vit NiEn

Although i is a generator it can be regarded as a noncentral formal paramef2g]dér
a precise meaning of this statement. Also, from the defining relatio(t) d@fis apparent
thatAOO(Sﬁ) is aZ-graded algebra with the grading defined by setting

dega) = degb) = 1, dega*) = deqdb*) = —1, degu) = 0.

C)

This in turn allows us to vievaoO(Sf;) as a comodule algebra of the Hopf algeltfeof
functions onU(1). Explicitly, H = C[u, u~1] is an algebra of Laurent polynomials in one
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variableu (i.e.,u~1 is the multiplicative inverse af), and it is ax-algebra withu* = u~1.

A Hopf algebra structure off is determined byA (1) = u ® u, e(u) = 1 andS(u) = u~ 1.
The grading ofAOO(Sg) makes it a right comodule algebra with the coaction given on
homogeneous elements by

AR(x) = x ® ude9w

Thus explicitly on generators the coaction comes out as

Ar(a) = aQu, AR(D) = b Q@ u, Ar(@®) = a* @u1,
ARD) =b*®@u"t, AW =p®L

Note that the coactiorp is compatible with thex-structure (it is ax-algebra homomor-
phism).

The definition of the coaction in terms of the grading immediately implies that the coin-
variant subalgebra coincides with the zero-degree subalgebra, i.e.:

A®(S2) = {x € A®(SD)|Ar(x) = x ® 1} = {x € A®(S3)|degx) = 0}.

UsingEq. (8)it is immediate to verify that is a central element iﬂoo(Si). It can be also
seen that>(52) is the commutant of: in A% (S3).

The relationg5) and (8)provide us with a deeper insight into the structureﬁ@‘f(Sﬁ).
With their help we can establish thaloo(Sﬁ) contains a (dense) polynomiatalgebra
A’(Sﬁ) generated by

X=X"=aa —3(u+D, 7 = ab*, 7Z* = ba*

and self-adjoint (invertible) elemept Notice thatA’(Sﬁ) is contained strictly in the com-
mutant ofu in A/(Sf;), which coincides with the grade-zero subalgebra’ajfs‘ﬁ) and also
with the H-coinvariant subalgebra el"(Si). Similar observations hold fM(Sﬁ), defined
as thex-algebra obtained from/(Sﬁ) by omitting the invertibility ofu.

The relations imoo(Sﬁ) are derived from the relations imoo(sﬁ) and come out as

uX — Xu =0, wZ —Zu =0, (10a)
XZ—ZX=—pZ, (10b)
77" — 7°7 = —2uX, (10c)
(x+%u)2+22k =1 (10d)

Note that from the relations above it follows that there is also a second radial relation:
X-iw?+z7z=1.

Sincep is central, it could be possible to considers a formal parameter and specify it
to a numerical value, we shall comment on this issue in the final section.
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We claim thatin a ‘dual’ sense the quantum contact 3—spﬁ;§'r&a total space of a quan-
tum U(1)-principal bundle over the quantum 2-sph€ﬁa ie., A“(Sﬁ) is a Hopf—Galois

extension 0fA°°(Sﬁ) with the structure Hopf algebrH. This claim is proven by explicit
construction of the inverse to the canonical map.

To relieve the notation we writ® for A°°(S3) and B for A“(Sﬁ). Consider the map
caml: P® H— P ®p P defined for allk € P andn € N by

n

canfl(x Qu'") = Z (Z ) x(a*)"ik(b*)k QB prak, (11a)
k=0
camtx@u™) =x(L+nw) ™ty (’; ) " *bk @5 (b*)k(a*)r 7k, (11b)
k=0
where

n

k
are the usual binomial coefficients. Directly from the definition it follows thatéasa left
P-module map. Furthermore, the degree counting on the right hand side and the comparison
of the powers of: immediately confirm that cart is a right H-comodule map. Before we

prove that can! is the inverse map to can we note that foralt N:

n

Z (Z) (a*)nfk(b*)kbkanfk =1, (128.)
k=0
Z (Z > KRB (@)K = 1+ np. (12b)
k=0

The formulag12)are most easily proven by induction. They are clearly satisfied forl.
Next, assume that they hold fer- 1 withn > 2. UsingEgs. (5d) and (6and the well-known
formula:

()=

observe that

n n—1
Z (Z) (@) By k = Z (” ; 1) (@)= Yk g1k, (13a)

k=0 k=0

Z (’]: ) "k pk (b*)k (a*)nfk

k=0

n—1
- (n k 1) IR+ ) (b @y, (13b)
k=0
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Then using8) we conclude thaEgs. (12a) and (12tjold for allz. Now we are in position
to prove that can! is the inverse of can. Takee P andn € N. Then

n

cancan }(x ® u")) = can <Z (Z ) x@) " * " @5 b"a”‘k)

k=0
n
— Z (Z)x(a*)n_k(b*)kbkan_k ® un =X ® un’
k=0

where the last equality follows froifi2a) Similarly, the use of12b)confirms that
cancan tx@u ™) =x@u".

Conversely, we need to check the equality cianx @ y)) = xQp y, forall x, y € P.
SinceP is aZ-graded algebra suffices it to take homogeneoufslegree:. Suppose > 0.
Then

n

car ! ((canx ® y)) = cam t(xy@ u") = » (Z) xy(@)" (") @p bra" k.
k=0

Since deg@y) = n, each of they(a*)" ¥ (b*)¥ has degree 0, hence it ishand we can write

n

can ((canx ®5 y) = ) | (Z ) x@p y(@)" )P " =2 @y
k=0

by (12a) In the case of homogeneou®f negative degree, we ugsy. (12b)to obtain the
assertion. Thus we have proven that can is a bijective mapAE%(.Sfj) is a Hopf-Galois

extension ofA“(Sﬁ) as claimed.

3. Monopole connection and projectors of chargen
3.1. Strong connection

Connections in quantum principal bundles are defined as colinear splittings of one forms
into horizontal and vertical parts (d#4]). From the non-commutative geometry point of
view a special class of connections, introduceili8] and known as strong connections,
is of particular interest. In the universal differential calculus case, strong connections on a
Hopf-Galois extensio® — P are in one-to-one correspondence vdttong connection
one forms These are defined as homomorphisms H — P vanishing on 1 and
satisfying the following three conditions (s§k5, Theorem 2.3for various equivalent
descriptions of strong connections):

Apipow = (w®id) o Ad, (14a)

(mp®id) o (id® AR) o w = 1® (id — ¢), (14b)
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dp — po@(pay) € (2'B)P VpeP. (14c)

A few of the symbols above require explanation. The ragp , on the left hand side of
Eq. (14a)is the right coaction oH on 21 P obtained be restricting the right coaction/éf
on the tensor produ@® ® P (right diagonal coaction). Explicitly:

Agip: 2P > Q'PQH. ) @D = ) pio ® Plo ® Piny Py
i i
The map Ad on the right hand side B§. (14a)is the right adjoint coaction aff on itself,
e, Add:H - HQH,h — ho ®S(h@))ha). ThusEg. (14a)corresponds to the classical
ad-covariance property of a connection one-form. As recall&eution 2the map

on the left hand side diq. (14b)has a geometric meaning o¥artical lift, i.e., an operation
which lifts an element of the Lie algebra of a structure group of a principal bundle to a vector
tangent to a fibre. Thugqg. (14b)has the classical geometric meaning of the property that
a connection form evaluated at a vertical lift of an element of a Lie algebra, returns back
this element. FinallyEq. (14c)is the strongness condition, which distinguishes strong
connections within a class of all connections on a Hopf-Galois extension.

Suppose that the antipodec H is invertible. In this case is a left H-comodule with
the coaction:

AL P—> HQ® P, pl—)Silp(l)(X)p(o).

Onethen proves thatifthereisam@apH — P® P that satisfies the following conditions:

H)=1®1, (15a)

x(Eh) =1 h, (15b)

th) ® h) = (id® Ar) o £(h), (15c)

hay ® L(h) = (AL ®id) o £(h) (15d)
forall h € H, then the map

o H— 2P, hi> eh) —e(h)1®1 (16)

is a strong connection form. This is, in fact, an equivalent description of strong connection
one forms, which is a consequence[21, Proposition 3.4|and the observation that if
¢ satisfies(15c¢) and the corresponding satisfies(14a)then ¢ satisfies(15d). Note that
Egs. (15c¢) and (15dimply state that is an H-bicomodule map, wher# is a viewed as
a bicomodule via the coproduct, ad® P is an H-bicomodule with coactiong| ® id
and id® Ag.
The antipode of the Hopf algeb# of functions onU(1) is involutive, i.e.,S o § = id,
hence, in particular, invertible. Thus we can define the left coactioffior P = A°°(Sf;).
This again is defined in terms of tlfegrading and comes out as

AL (x) = u~9890 g x
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for any homogeneous € P. Thus we can follow the above procedure in the case of a
Hopf-Galois extensio® = A>(S3) of B = A (S2), and defin¢ : H — P ® P by

n

E(Mn) — Z (Z) (a*)n—k(b*)k ® bka"_k, (17a)
k=0

E(ufn) — (1+ n,u)fl];) (Z)ankbk ® (b*)k(a*)nfk’ (17b)

(=101 (17¢)

forn e N. Note that this is simply the expression for cail®#) lifted to P® P by omitting

the decoratio on® (cf. EQ. (11). By the definition o, Eq. (15a)s satisfied. Next, since

x is a lifting of the canonical map can ®® P, similar arguments to those used to prove
that ca! is the right inverse of can ensure tti&j. (15b)is satisfied. Moreover, similarly

as in the discussion after the definition of canby counting the degree it follows théat

is a right H-colinear map, hencEq. (15c)holds. Finally, since dega*)" % (b*)X) = —n

and dega"*b*) = n, one easily realises that the mags also left H-colinear, so that

Eq. (15d)is satisfied. Thus we have constructed a strong connection in the quantum contact
Hopf fibration with the strong connection form(u") = ¢(u") — 1® 1, for alln € Z.

3.2. Projectors

To any Hopf-Galois extensioB — P with the structure Hopf algebr& and any
right H-comoduleV one can associate a leB-module " (V, P) which plays the role
of the module of sections of the associated quantum vector bundle. Explicttigy, P)
is a vector space of rightZ-comodule mapg : V — P with the B-action given by
(b - ¢)(v) = bep(v). If a Hopf—Galois extensio® — P admits a strong connection aifl
has a bijective antipode then for any finite-dimensiorial"® (V, P) is a finitely generated
projective leftB-module (cf.[15]). Furthermore, the covariant derivative corresponding to
a strong connection gives rise to a connection in modulgV, P).

Forany map : H — P ® P satisfying condition§15), write, for allz € H:

ey =" e m @ A m). (18)

Although the number of terms in the sum on the right hand side may depend:,on
it is always finite. Choose and theZEl] (h), EZ[Z] (h) in such a way that each of the sets
My, My, ..., My, (€@, €@, ..., 3 1)} is linearly independent. Ap-
plication of id® ¢ to both sides oEq. (15b)yields

S M mddm) = e (19)

Since the right hand side &f. (18)is finite, for anys € H one can define a square matrix
p(h) by

P> p(hyj = (P my e ). (20)
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Eq. (19)immediately implies thap ", p(h)ikp(h)kj = e(h) p(h)jj, hence the matrip(h) is
an idempotent, provideglz) = 1. Furthermore, iz is a group-like element, i.e4(h) =

h ® h, thenEgs. (15¢) and (15dmply that Ar(p(h)i) = p(h)j ® 1, i.e., p(h)j € B.
In other words, for any group-like elemehte H, p(h) is anr x r matrix (- being the
number of terms i1f18)), that is an idempotent in a matrix ring ovBr Therefore it defines
a finitely generated projective module vk p(k). The connection corresponding £¢ds
simply the Grassmann or Levi—Civita connectionBify(h), i.e., a connection determined
by the idempotent (c{13]).

In the case of the Hopf-Galois extensiafi®(S2) — A™(S3) each of theu" is a
group-like element. Therefore the mapefined by formula€l7) gives an infinite family
of idempotente(u™), n € Z. Each of thep(u") is an(n + 1) x (n + 1)-matrix with entries
from A°°(S§) (the latter claim can be easily confirmed by the degree counting). Obviously
there is an ambiguity in factorisinginto ([ ® ¢12] (scalar coefficients can be factorised
in infinitely many ways into legs of tensor product). However if one requi@$) to be
Hermitian (i.e., projectors i®) then the unique possibility turns out to be

=101  (wH=Y [ (Z)(a*)n—k(b*)ki| % [ <Z )bka"_ki| |

k=0
(21a)

W=y [ (Z>(1+ n,u)_la"_kbk] ® [ (Z)(b*)k(a*)"_k:| (21b)

k=0

for n € N. This choice leads to an infinite family of Hermitian projectors with entries from
A (S82). Explicitly, p(1) = 1, and

P = (Z) (’l’)b"a"—k<a*)”—l<b*>l, (222)

P = ( . ) (’} )(b*)"(a*)""(l + )"t (22b)

n € N, Atthis pointitis interesting to mention that apparently these formulae are polynomial
ina, b, a*, b*, and polynomial only i1 + nu) =1, with n € N, but not inu (e.g.,(22b)).
However, their entries have to be properly rearranged in order to express them in terms of
the generator¥, Z, Z*. In A°°(S;°;) this can be always done with the help of relatigb)s

and (8)at the cost of creating new expressidis+ nu) 1 in (22a)and (1 — nu) =t in

(22b), with n € N. Altogether the whole set of projectors can be rewritten in terms,of

Z, Z* and all(1 + k)~ with k € Z. (The reason for this behaviour is that the elements

X, Z, Z* andu do not generate the whole grade-zero polynomial subalgebna(xﬁ).)

For instance, the first few projectoggu), p(u=1), p(u?), p(u=2) come out in a matrix
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form as
la+w+x z 1 la-w+x z*
pu) = P lavm-x ] plu= ") = 7 1o s
5 Q+w 71-m-X
X+ FA+ )X + F(1+3w) VE(X+ 5(1+30)Z 22
Pl = VXX + 3430 23A+w+0GA+n -0 Va(54 - X2
(2%)? V2ZH (G At ) = X Ga+w-0GaA+30-x
KX+ 3A-wX+350A-30)  V2X+FA-30Z* 2*?2
e V2Z(X + (- 3u) 2A3A-w+X(FA-w = X) Vagga-w-xz*
22 V2z(a - -x FA-w-03A-30-X)

Note an interesting symmetry betwee"), andp(x ") for low values of:. The projector
p(u™") is obtained from the projectagr(u™) by replacingu by —u and interchanging of
with Z*. This is true for any value of chargeas can be verified directly from the explicit
expressions for greater charggsvhich can be presented. However, this follows also from
the following symmetry properties. First observe that the transformation

Z— ZF, Z¥ - Z, X X, W= — (23)

does not affect the defining relatio$0) and defines an automorphism of the algebra
A (S82). This symmetry ot (53) comes in fact from the following symmetry af° (S3).

Using the elementg/1+ ku € A°°(S§), their inverses A1+ ku for k € Z and the
relations(9) we see that the map

91 AP(S3) > A%(SY), L —u, a—> A=.1- pa*,
b+ B=/1— ub* (24)
extends to an algebra automorphism. Note thataps degree elements to degreen

elements, and on the level of degree 0 elements corresponds to the automorp&ﬁ%m@‘
given by (23). Now, using the relations

1+(n—-Du ,
e o)

d'"(1—p) = b"(l_u)_wb"

= 0
14+nu 1+nu "=

and the fact that is central inA°°(S§) we find that

Hpwn) = pu™")u.

Thus the automorphisnﬁ|AOO(Sﬁ) : A“(Sﬁ) — A“(Sﬁ) turns the degree projectors into
degree—n projectors, and its existence proves the stated symmetry of monopole projectors.

4. Final remarks
If u is not required to be invertible the underlying polynom&eﬂlgebraA(Sﬁ) admits a

specification tqu = 0, after which it coincides with the usue&lalgebra of polynomials on
the ‘classical’s®. As far as the ponnomiaJ—aIgebraA/(Sﬁ) is concerned, singe is central
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it can be specified to any nonzero real value. This yields a family of quantum 2-spheres
isomorphic to the universal enveloping algebra af2with a constrained value/L? of
the quadratic Casimir element (¢L4]). The *-algebraA(Sﬁ) (i.e., when the invertibility
of u is not assumed) admits in addition a specification te 0, which clearly corresponds
to polynomials on the ‘classicak?. Note that the Eq. (22) witlx considered as a real
deformation parameter rather than as a central generator define also a family of projectors
p™) over such quantum 2-spheres. In particular, wixer= 0, the projectorsp(u™)
correspond to line bundle projectors of the monopole charge or Chern’s nuroker s2.
Note also that thert defined by (24) is the orientation reversing automorphisisi®of

It would be interesting to investigate further our bundles and the associated projective
modules, especially the pairing betwekrtheory andk-homology. For that aim it would
be convenient to have@*-algebraic version of the construction above as otherwise com-
putation of, e.g., thek-groups is a formidable task. It can be seen thatsttedgebras
A(Si) and A(Si) admit certainC*-algebraic completions. Although intuitively resem-
bling some topological quantum four (resp. three)-dimensional spaces rather than 3-spheres
(resp. 2-spheres), they nevertheless would constitute interesting examples. Unfortunately,
there is one obstacle for this task. In order to write formyle® for the inverse of the
canonical map and then for the connection and the projectors we should adjcb(jﬁim
and toA(SIZL) an infinite number of element4 + ki) 1, k € Z. (To be able to implement
the symmetry discussed at the en&ettion 3.2ve should adjoin additionally the elements
I+ kwand ¥//1+ ku.) It can be seen that this spoils not only tiie-algebraic comple-
tion but already leads to problems on the level of unitary representations eflgebraic
version. This follows from the representation theory of, mgsﬁ), which can be inferred
from that of sy2). In fact all bounded representations decompose into finite-dimensional
irreducible ones. These in turn are as follows. There is a family of one-dimensional rep-
resentations (characters) parameterised by the poins$ tiiat represent. by 0 (they
obviously do not extend th’(Sﬁ)). In addition, in each dimensioN € N there are two
x-representations, labelled by= +1 that represent either by ¥ N or by —1/N. Namely,
they are given by

o om o
MU = Nvmv Xvy, = vav Zuy = ﬁ\/(N'i‘ 1-2m)(N — 1+ 2m)vy,_1,

ZHum = %\/(N —1—2m)(N + 1+ 2m)vps1 (25)

with respect to an orthonormal basjs, wherem € {—(N —-1)/2, —(N—-3)/2, ..., (N —
3)/2, (N — 1)/2}.

This excludes a possibility of adjoining the needed elements if we want batgebra
to describe more than merely the commutati%e At this point it is interesting to make
the following observation. Had we constrained ourselves to construct just certain subclass
of projectors, say for a selected class of charges, we might have a chance to accomplish
a nondegenerate-algebra extended by some (but not all) elemehts k)~ and then
also itsC*-algebraic version. For instance, restricting only to the positive chartgss/es
at our disposal the series of all representations that represeégt1/N. It is not clear
however what could be a possible interpretation of such a breaking of the (magnetic) charge
conjugation by the contact structure quantisation with a noncentral parameter.
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Finally, as explained isection 2 Hopf—Galois extensions are quantum group principal
bundles with the universal differential calculus. Itis certainly interesting and indeed desired
to study differential structures on quantised contact spheres and then try to analyse for
which low-dimensional calculi the Dirac monopole construction can be performed. In this
context, one can follow the procedure[6] to construct compatible differential calculi on
quantised contact spheres using the strong connection derived in the present work.
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